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Abstract

Axisymmetric thermocapillary convection during laser melting has been investigated numerically. The dynamic free

surface, with pinned contact point at the edge of the molten pool, is obtained as a solution of the coupled transport

equations. Free surfaces at the steady state are depressed at the center and convex near the edge of the molten pool

because fluid flows away from the center. The surface deformations decrease with increasing Re at fixed Ca, while they

increase with increasing Ca at fixed Re. The width and depth of the pool, temperature and surface deformation increase

with increasing Bf. At the transient cases, the size of the pool and surface deformation increase monotonically with

time. The shape of the free surface is a bowl bump at a low Re, while at a high Re two kinds of surface shapes occur

with time: bowl and Sombrero-shaped bumps.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Lasers are used to weld because of efficiency in heat-

ing localized regions and to produce new properties due

to rapid heating and cooling rates through laser surface

treatment. Laser melting and surface deformation have

attracted much attention due to a variety of industrial

applications such as welding, fabrication of microstruc-

tures and laser zone texturing. Accordingly, many stud-

ies have been performed to examine the shape of liquid

pool, heat transfer, fluid flow and surface topography in

laser-materials interaction. Most studies investigated

laser melting problems with non-deformable and flat
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surfaces. A few included free surface deformations in

laser melting problems.

Srinivasan and Basu [1] showed that buoyancy forces

in the fluid during laser melting could be neglected. Basu

and Date [2], Ravindran et al. [3] and Kim and Sim [4]

investigated laser-melting problems with non-deforma-

ble flat surfaces in the molten pool.

Baumgart et al. [5], Chen et al. [6] and Willis and Xu

[7] investigated experimentally the shape of free surface

during pulsed laser-materials interaction. They found

several kinds of surface shapes by varying the laser pulse

energy. Two-dimensional numerical simulations with

deforming surfaces during laser-material interaction

were studied by Bennett et al. [8], Iwamoto et al. [9]

and Fan et al. [10]. Iwanmoto et al. [9] used a simplified

incomplete equation for deforming free surfaces and

marker and cell method (MAC), and found that the free

surface was a bowl shape. Fan et al. [10] considered elec-

tromagnetic, buoyancy, arc drag, and thermocapillary
ed.

mailto:wskim@hanyang.ac.kr 


Nomenclature

Bf boundary heating factor,
q00r0Cp

klk
Ca Capillary number, ck

r0Cp

Cp specific heat

H nondimensional enthalpy

k nondimensional thermal conductivity

Ma Marangoni number, Pr Æ Re
P nondimensional pressure

Pr Prandtl number, m
a

q
00

power density of the beam

r radial direction

rmax maximum width of the molten pool

r0 radius of the beam

Re Reynolds number, URr0
m

Ste Stefan number,
CpðTm�T1Þ

k
t nondimensional time

T nondimensional temperature

Tm melting temperature

UR surface tension reference velocity, ck
Cpl

u nondimensional radial velocity

V nondimensional liquid volume

v nondimensional velocity vector

v nondimensional axial velocity

z axial or vertical direction

Greek symbols

k latent heat of fusion

m kinematic viscosity

l dynamic viscosity

a thermal diffusivity

c �or/oT
r surface tension

q density

Subscripts

l liquid

s solid

0 reference state

1 ambient

Superscript

* dimensional quantity
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forces during gas tungsten arc welding, and solved dy-

namic free surfaces with only surface pressure distribu-

tion. Free surface should be determined by both

surface pressure and normal viscous stresses.

In the present work we report on thermocapillary

convection in laser melting problems with deformable

interfaces by two-dimensional numerical simulations.

The shape of the free surface is unknown and is calcu-

lated as the part of the complete solution. Numerical re-

sults with non-deformable flat surfaces are compared

with those from other studies. The influence of surface

deformation on convection is investigated.
Fig. 1. Physical system.
2. Mathematical model

The physical system considered is shown in Fig. 1. A

stationary, continuous, axisymmetric laser beam of ra-

dius r0 with a uniform heat flux irradiates the surface.

The beam radii of 1mm and 0.5mm are used to compare

with, respectively, numerical [3] and experimental [11]

results. The uniform heat flux is reasonable because

the radius of the laser beam is so small. All of the inci-

dent energy is assumed to be absorbed into the material.

The top surface outside the beam is adiabatic, and the

bottom and side walls have constant temperatures,

T1 = 300K. Melting occurs beneath the beam, and the

flow in the molten pool is a surface tension driven flow

due to a temperature gradient along a free surface which
is thermocapillary convection. Surface tension is as-

sumed a linear function of temperature,

r ¼ r0 � cðT � � T 0Þ: ð1Þ

With negligible body forces, the nondimensional gov-

erning equations are:

r � v ¼ 0; ð2Þ

1

Ma
ov

ot
þr � ðvvÞ ¼ �rP þ 1

Re
r2v; ð3Þ

oH
ot

þMar � ðvHÞ ¼ r � ðkrT Þ: ð4Þ
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The boundary conditions considered are:

oT
or

¼ u ¼ ov
or

¼ 0; at r ¼ 0; ð5Þ

T ¼ �Ste; u ¼ v ¼ 0; at r ¼ W ; ð6Þ

T ¼ �Ste; u ¼ v ¼ 0; at z ¼ 0: ð7Þ

The non-dimensionalized position of the free surface

is described by a function h(t, r). Thermal, kinematic

and tangential and normal stress balance boundary con-

ditions at the interface are

1

N
�h0

oT
or

þ oT
oz

� �
¼ Bf ; ð8Þ

v ¼ 1

Ma
oh
ot

þ h0u; ð9Þ

ð1� h02Þ ou
oz

þ ov
or

� �
þ 2h0

ov
oz

� ou
or

� �

¼ �N
oT
or

þ h0
oT
oz

� �
; ð10Þ

�Re � P þ 2

N 2

ov
oz

þ h02
ou
or

� h0
ov
or

þ ou
oz

� �� �

¼ 1� CaT
CaN

h00

N 2
þ h0

r

� �
; ð11Þ

where N = (1 + h
02)1/2, h0 ¼ oh

or, and Bf = 0 at r > 1. Ca

provides a measure of surface deflection in response to

thermocapillary-induced stresses. If Ca = 0 (large sur-

face tension), the dynamic surface deformations can be

neglected and the free surface is non-deformable. Free-

surface curvature is determined by both surface pressure

and normal viscous stresses as shown in Eq. (11). The

nondimensional variables are as follows:

t ¼ t�a
r20

; r ¼ r�

r0
; v ¼ v�

UR

P ¼ P �

qU 2
R

; T ¼ CpðT � � TmÞ
k

; k ¼ k�

kl

The initial and boundary conditions for Eq. (11) are:

hðt ¼ 0; rÞ ¼ D;

h0ðt; r ¼ 0Þ ¼ 0;

hðt; r ¼ rlÞ ¼ D;

ð12Þ

where rl ¼ rmax

r0
. The liquid volume must satisfy the mass

conservation, and its changed total volume should be

zero:

V ¼
Z rl

0

ðh� DÞrdr ¼ 0; ð13Þ

where V is the non-dimensional liquid volume.
3. Numerical aspects

In order to solve the problem with a deformable sur-

face, the equations are transformed from the physical

domain (t, r,z) into a rectangular computational

domain(t,n,g).

n ¼ r ð14Þ

g ¼ zD
hðt; rÞ ð15Þ

The transformed governing equations are

1

n
onu
on

� g
h0

h
ou
og

þ D
h
ov
og

¼ 0; ð16Þ

1

Ma
ou
ot

� g
h
oh
ot

ou
og

� �
þ 1

n
onu2

on
� g

h0

h
ou2

og
þ D

h
ouv
og

¼ � oP
on

þ g
h0

h
oP
og

þ 1

Re
r2u� u

n2

� �
; ð17Þ

1

Ma
ov
ot

� g
h
oh
ot

ov
og

� �
þ 1

n
onuv
on

� g
h0

h
ouv
og

þ D
h
ov2

og

¼ �D
h
oP
og

þ 1

Re
r2v; ð18Þ

oT
ot

� g
h
oh
ot

oT
og

þMa
1

n
onuT
on

� g
h0

h
ouT
og

þ D
h
ovT
og

� �

¼ 1

n
o

on
kn

oT
on

� �
� gh0

h
o

og
k
oT
on

� �
þ o

on
k
oT
og

� �� �

þ 2
h0

h

� �2

� h00

h
� h0

hn

" #
gk

oT
og

þ h0g
h

� �2

þ D2

h2

" #
o

og
k
oT
og

� �
� of

ot
; ð19Þ

r2 ¼ 1

n
o

on
n
o

on

� �
� 2gh0

h
o2

ogon

þ 2
h0

h

� �2

� h00

h
� h0

hn

" #
g
o

og

þ h0g
h

� �2

þ D2

h2

" #
o2

og2
; ð20Þ

where f is the local liquid fraction. For a liquid control

volume without a mushy zone, f = 1 while for a solid

f = 0. The latent heat of fusion is accounted by the

source term [12], of
ot , in the energy equation, Eq. (19).

The transformed boundary conditions become

At n ¼ 0;
oT
on

¼ u ¼ ov
on

¼ 0; ð21Þ

At n ¼ W ; T ¼ �Ste; u ¼ v ¼ 0; ð22Þ
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Fig. 2. Surface temperature and velocity distributions with

various grids (Re = 65.6, Bf = 15.75 and Ca = 0). Grid inde-

pendence almost achieved.

Table 1

Property values of steel [3]

Variable Value Nondimensional

value

q 7200 (kg/m3)

ks 31.39 (W/mK)

k 2.47 · 105 (J/kg)

T1 300 (K) Ste = 4.338

r0 1 (mm)

Tm 1723 (K)

Cp 753 (J/kgK)

kl 15.48 (W/mK)

l 0.006 (Ns/m2) Pr = 0.292

q 6 · 107 (W/m2) Bf = 11.82

8 · 107 (W/m2) Bf = 15.75

1.2 · 108 (W/m2) Bf = 23.63

c �10�6 (N/mK) Re = 65.6

�10�5 (N/mK) Re = 656

�10�4 (N/mK) Re = 6560
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At g ¼ 0; T ¼ �Ste; u ¼ v ¼ 0: ð23Þ

At the interface (g = D),

Dð1þ h02Þ
h

oT
og

� h0
oT
on

¼ NBf ; ð24Þ

v ¼ 1

Ma
oh
ot

þ h0u; ð25Þ

D
1þ h02

h

� �
ou
og

� 2h0
ou
on

þ D
h0 þ h03

h

� �
ov
og

þ ð1� h02Þ ov
on

¼ �N
oT
on

; ð26Þ

�Re � P þ 2D
h

ov
og

� h0
ou
og

� �
þ 2h0

N 2
h0
ou
on

� ov
on

� �

¼ 1� CaT
CaN

h00

N 2
þ h0

n

� �
; ð27Þ

as in Eq. (11), P contains a free integration constant, c(t).

h(t, r) and c(t) are determined by Eqs. (27), (12) and (13).

A shooting method is used to find c(t) at each time.

The free-surface shape, h(t, r), is unknown and should

be obtained as a solution of the coupled governing equa-

tions along with the surface force balance. The

transformed governing Eqs. (16)–(19) and boundary con-

ditions, Eqs. (21)–(27), are solved by a finite volume

method employing a SIMPLER algorithm. Nonuniform

grids are constructed with finer meshes in the regions

under the free surface and near the center. All computa-

tions are started with h = D, v = 0 and T = �Ste. A brief

summary of the computational procedure is as follows

[13,14]:

1. Start with initial conditions for T, v, and h.

2. Solve the conduction equation to find T until melting

starts (This step is skipped if a molten pool exists).

3. The rectangular computational domain is generated

numerically.

4. Solve the transformed governing equations, Eqs.

(16)–(19), to find T and v with the transformed

boundary conditions, Eqs. (21)–(26).

5. Calculate h and c with the normal stress balance and

liquid volume equations, Eqs. (27), (12) and (13).

6. Steps (3)–(5) are repeated at each time step until all

conditions for T, v, and h are satisfied with the

desired accuracy.

7. Return to step (1) for the next time.

Convergence criterion for a steady state is jsn+1 � snj/
jsn+1j < 10�3, where s is any variable(u,v,T,h) at all points

and n is time iteration level. In order to examine grid

dependence, free surface temperature and velocity distri-

butions are computed with various grids in Fig. 2. The

errors of the maximum temperatures and velocities with
two different grid points are less than 5% in Fig. 2, and

the grid-independence is achieved with 41(r) · 41(z) grid

points. A mesh of 41(r) · 41(z) grid points with nonuni-

form grids is used for all computations.
4. Results and discussion

Property values of steel and nondimensional param-

eters for numerical simulations are shown in Table 1.

The numerical code is based on [15,16], and the the

numerical results in our previous work [15] were in good

quantitative agreement with experiments, which have no

phase-change. In order to validate the numerical code



Table 2

Comparison of molten pool shape and maximum temperature

Re Present results Ravindran et al. [3]

Width Depth Tmax Width Depth Tmax

65.6 0.95 0.26 3.418 0.91 0.28 3.649

6560 0.97 0.19 2.217 0.97 0.18 2.155

Bf Experiments [11]

3.456 0.845 0.31 0.82 0.35

4.541 0.99 0.425 1.00 0.46

6.203 1.151 1.016 1.2 1.00

Bf = 15.75 for the numerical results [3], and r0 = 0.5mm, Ma = 1851, Pr = 0.009, Re = 201960 and Ste = 1.2117 for the experiment [11].

Radial Direction (r)

S
ur

fa
ce

T
em

pe
ra

tu
re

S
ur

fa
ce

V
el

oc
ity

(
(u

2 +
v2 )0.

5
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Re=65.6
Re=656
Re=6560

Ca=0.01, Bf=15.75

Fig. 4. Surface temperature and velocity distributions associ-

ated with Fig. 3. Maximum temperature and velocity increase

with decreasing Re.

B.-C. Sim, W.-S. Kim / International Journal of Heat and Mass Transfer 48 (2005) 1137–1144 1141
with phase-change, the computed pool shape and maxi-

mum temperature are compared with numerical [3] and

experimental [11] results in Table 2, where the experi-

ment is for Al–4.5%Cu. Ravindran et al. [3] solved the

energy equation with the apparent capacity method.

The present results are in good agreement with the

numerical [3] and experimental [11] results.

4.1. Steady thermocapillary convection

Fig. 3 shows free surfaces at steady state with

Ca = 0.01, Bf = 15.75 and various Re. The correspond-

ing surface temperature and velocity distributions are

shown in Fig. 4. The free surface is depressed at the cen-

ter and convex near the edge of the molten pool because

fluid flows away from the center. As Re increases, the

surface temperature gradient and hence the surface

velocity decreases as shown in Fig. 4. The maximum

temperature and velocity increase as Re decreases. The

increased velocities induce larger surface deformations
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Fig. 3. Free surface deformations with Ca = 0.01, Bf = 15.75

and various Re. Crater depth and rim height increase with

decreasing Re at a fixed Ca.
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Table 3

Molten pool shape and maximum temperature with Bf = 15.75

Re Ca Width Depth Tmax

65.6 0 0.95 0.26 3.418

0.01 0.95 0.26 3.314

0.02 0.94 0.25 3.125

0.03 0.95 0.25 3.117

6560 0 0.97 0.19 2.217

0.01 0.94 0.17 2.085

0.02 0.94 0.18 2.073

0.03 0.94 0.18 2.104
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at a fixed Ca. Thus, the surface deformations increase

with decreasing Re at fixed Ca.
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Fig. 8. Streamlines with Ca = 0.01: (a) Re = 65.6 and Bf = 15.75, (b) R

Re = 6560 and Bf = 23.63. Depth of the molten pool decreases with in

increasing Bf at fixed Re.
Figs. 5 and 6 show the variations of the free surface

with Ca at fixed Re = 65.6 and 6560, respectively. As

Ca! 0, surface tension increases and the dynamic sur-

face deformations can be neglected. The shape of the

free surface, number of ripples, and reflection point do

not change with Ca at a fixed Re, while the surface

deformations, the magnitude of depressions and eleva-

tions, increase with increasing Ca due to small surface

tension. Surface deformation is O(10�3). Its maximum

value is 2.15 · 10�2, about 8.6% of the molten depth,

with Re = 65.6 and Ca = 0.03. The effect of Ca on max-

imum temperature and shape of the molten pool is

shown in Table 3. They are almost insensitive to varia-

tions in Ca at fixed Re. Ca at fixed Re has little effect
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creasing Re at fixed Bf, while the depth and width increase with
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on the convection, while Re substantially influences the

convection at fixed Ca.

Fig. 7 shows effect of Bf on the free surfaces with

Re = 6560 and Ca = 0.01. The streamlines in the molten

pool are shown in Fig. 8 with Ca = 0.01. As expected,

the width and depth of the molten pool, temperature

and surface deformation increase with increasing Bf at

fixed Re. While the depth of the pool decreases with

increasing Re at fixed Bf, the width is almost independ-

ent of Re. As Bf increases at fixed Re, the center of the

convection cell moves closer to the free surface and the

melt interface due to stronger convection. The flow fields

show a large toroidal, single-cell flow, which is a typical

axisymmetric thermocapillary convection. Therefore,

detailed discussions are omitted here and can be found

in other studies with a non-deformable flat surface [2–4].

4.2. Transient thermocapillary convection

Ca is in the range 0.000169–0.0169 with

�10�6
6 c 6 �10�4 and r0 = 1.943N/m [10]. Figs. 9

and 10 show transient surface deformations with

Ca = 0.02 and Bf = 15.75 at fixed Re = 65.6 and 6560,

respectively. The width of the pool and surface deforma-

tions at a low Re increase monotonically with time as

shown in Fig. 9. With Re = 6560 and Ca = 0.02, the sur-

face deformations increase until t = 2, and then decrease

slightly with time as shown in Fig. 10. Two kinds of the

surface shapes occur with time: bowl and Sombrero-

shaped bumps. These two shapes are in good qualitative

agreement with transient results from experiments [5,6],

where the experiments are for glass without latent heat

of fusion. Several shapes of the free surfaces can be

found in [6–8].
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Fig. 11 shows transient flow patterns corresponding

to Fig. 10. The shape of the molten pool changes rapidly

during the earlier time, and then the change rate de-

creases. The size, width and depth, of the pool increases
(a) t=0.7
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(b) t=0.9
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(c) t=1.5
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1.9

(d) Steady state
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Fig. 11. Transient flow pattern corresponding to Fig. 10.
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with time. The noticeable change in flow fields occurs at

t = 0.9 as shown in Fig. 11(b). At the transition (t = 0.9),

the surface shape changes very much as shown in Fig. 10

and hence the flow is unstable in Fig. 11(b), vice versa.

It is well known that steady thermocapillary flow

undergoes a transition to oscillatory time-dependent,

three-dimensional flow [17–20]. However, flow instabili-

ties are not investigated here due to their three-dimen-

sional nature. The instabilities on thermocapillary

convection in open cylinders with a uniform heat flux

can be found in [15].
5. Conclusions

Axisymmetric thermocapillary convection during

laser melting has been investigated numerically to

analyze molten pools and surface deformations. The

dynamic free surface, with pinned contact point at the

edge of the molten pool, is obtained as a solution of

the coupled transport equations and boundary

conditions.

Free surfaces at steady state are depressed at the center

and convex near the edge of the molten pool because fluid

flows away from the center. The surface deformations de-

crease with increasing Re at fixed Ca, while they increase

with increasingCa at fixedRe. The surface deformation is

O(10�3). Its maximum value is 2.15 · 10�2, about 8.6% of

the molten depth, with Re = 65.6 and Ca = 0.03. The

width and depth of the pool, temperature and surface

deformation increase with increasing Bf.

In the case of transition, the size of the pool and sur-

face deformation increase monotonically with time. The

shape of the free surface is a bowl bump at a low Re,

while at a high Re two kinds of surface shapes occur

with time: bowl and Sombrero-shaped bumps.
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